Diversion of the metabolic flux from pyruvate dehydrogenase to pyruvate oxidase decreases oxidative stress during glucose metabolism in nongrowing Escherichia coli cells incubated under aerobic, phosphate starvation conditions.

نویسنده

  • Patrice L Moreau
چکیده

Ongoing aerobic metabolism in nongrowing cells may generate oxidative stress. It is shown here that the levels of thiobarbituric acid-reactive substances (TBARSs), which measure fragmentation products of oxidized molecules, increased strongly at the onset of starvation for phosphate (P(i)). This increase in TBARS levels required the activity of the histone-like nucleoid-structuring (H-NS) protein. TBARS levels weakly increased further in DeltaahpCF mutants deficient in alkyl hydroperoxide reductase (AHP) activity during prolonged metabolism of glucose to acetate. Inactivation of pyruvate oxidase (PoxB) activity decreased the production of acetate by half and significantly increased the production of TBARS. Overall, these data suggest that during incubation under aerobic, P(i) starvation conditions, metabolic flux is diverted from the pyruvate dehydrogenase (PDH) complex (NAD dependent) to PoxB (NAD independent). This shift may decrease the production of NADH and in turn the adventitious production of H(2)O(2) by NADH dehydrogenase in the respiratory chain. The residual low levels of H(2)O(2) produced during prolonged incubation can be scavenged efficiently by AHP. However, high levels of H(2)O(2) may be reached transiently at the onset of stationary phase, primarily because H-NS may delay the metabolic shift from PDH to PoxB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions.

The influence of growth conditions on product formation from glucose by Lactococcus lactis strain NZ9800 engineered for NADH-oxidase overproduction was examined. In aerobic batch cultures, a large production of acetoin and diacetyl was found at acidic pH under pH-unregulated conditions. However, pyruvate flux was mainly driven towards lactate production when these cells were grown under strictl...

متن کامل

Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis

BACKGROUND One of the most fascinating properties of the biotechnologically important organism Saccharomyces cerevisiae is its ability to perform simultaneous respiration and fermentation at high growth rate even under fully aerobic conditions. In the present work, this Crabtree effect called phenomenon was investigated in detail by comparative 13C metabolic flux analysis of S. cerevisiae growi...

متن کامل

Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes.

Conversion of lignocellulosic feedstocks to ethanol requires microorganisms that effectively ferment both hexose and pentose sugars. Towards this goal, recombinant organisms have been developed in which heterologous genes were added to platform organisms such as Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli. Using a novel approach that relies only on native enzymes, we have ...

متن کامل

Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose.

Pyruvate is located at a metabolic junction of assimilatory and dissimilatory pathways and represents a switch point between respiratory and fermentative metabolism. In Escherichia coli, the pyruvate dehydrogenase complex (PDHC) and pyruvate formate-lyase are considered the primary routes of pyruvate conversion to acetyl-CoA for aerobic respiration and anaerobic fermentation, respectively. Duri...

متن کامل

Comparative studies of Escherichia coli strains using different glucose uptake systems: Metabolism and energetics.

Modifying substrate uptake systems is a potentially powerful tool in metabolic engineering. This research investigates energetic and metabolic changes brought about by the genetic modification of the glucose uptake and phosphorylation system of Escherichia coli. The engineered strain PPA316, which lacks the E. coli phosphotransferase system (PTS) and uses instead the galactose-proton symport sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 21  شماره 

صفحات  -

تاریخ انتشار 2004